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We formulate a new method of performing high-temperature series expansions
for the spin-half Heisenberg model or, more generally, for SU(n) Heisenberg
model with arbitrary n. The new method is a novel extension of the well-estab-
lished finite cluster method. Our method emphasizes hidden combinatorial
aspects of the high-temperature series expansion, and solves the long-standing
problem of how to efficiently calculate correlation functions of operators acting
at widely separated sites. Series coefficients are expressed in terms of cumulants,
which are shown to have the property that all deviations from the lowest-order
nonzero cumulant can be expressed in terms of a particular kind of moment
expansion. These ‘‘quasi-moments’’ can be written in terms of corresponding
‘‘quasi-cumulants,’’ which enable us to calculate higher-order terms in the high-
temperature series expansion. We also present a new technique for obtaining the
low-order contributions to specific heat from finite clusters.

KEY WORDS: High-temperature expansion; Heisenberg model; correlation
function; specific heat; new method.

1. INTRODUCTION

The high-temperature expansion can be used in any dimension and has
provided significant information on variety of models. (1) It is based on the
Taylor expansion of the Boltzmann factor e−bH in b, around the high-
temperature limit. Although the concept of the high-temperature expansion
is quite simple, its high-order calculation requires sophisticated strategies.
A standard method of the high-temperature expansion is called the finite



cluster method (1–3) (FCM). It has been used for a long time, (1) and progress
of the high-temperature series has been due mainly to improvement of
computers. In the FCM, the series expansion is reduced to calculation in
connected finite-size clusters. However, the FCM is inefficient for calculat-
ing a correlation function between rather distant sites: (i) The clusters have
to include those two sites and calculation in such large clusters consumes
a lot of time; (ii) The FCM does not use a valuable piece of information.
That is, the high-temperature series of a long-range correlation starts at a
certain finite order, namely, low-order coefficients are equal to zero—phy-
sically, it means that a long-range correlation develops at low temperature.

In this paper, we formulate a new method oriented to the long-range
correlation, namely, it overcome (i) and (ii) above. The new method is valid
for the spin-1/2 Heisenberg model, or, more generally, for SU(n) Heisen-
berg model with arbitrary n. High-temperature series coefficients are
written in terms of cumulants. We start from the lowest-order nonzero
cumulant in the correlation-function series. Next, we consider a deviation
from it. Then, the deviation can be regarded as a sort of moment, which we
call a quasi-moment. The corresponding quasi-cumulant enables us to cal-
culate a number of terms higher than the lowest-order nonzero cumulant.
In ref. 4, the Fourier transform of the correlation function is calculated
using the new method and the FCM complementarily. That is, we have
used the new method for the long-range correlations and the FCM for the
short-range correlations.

In addition, also for the specific heat, we have adopted a similar strategy
in ref. 4. That is, contributions from the required largest cluster are cal-
culated by a new technique, and the FCM is used only for the smaller clus-
ters. We utilize cumulants relevant to the ordering of quantum variables. By
choosing nonzero cumulants from them, some of the series coefficients are
calculated simply. We explain also this new technique in this paper.

The structure of this paper is as follows. In Section 2, we present the
model. We show a representation of SU(n) Heisenberg model in terms of
exchange operators. The relation of a correlation function and an expecta-
tion value of the exchange operator is mentioned. In Section 3, we review
the high-temperature expansion. Although we use this model for illustra-
tion, what is written here can generally be applied to other models. To
clarify the purpose of our new method, we review the FCM in detail using
a one-dimensional system as an explicit example. In Section 4, we describe
the new method for the correlation function. Here, we derive some proper-
ties of the cumulants. Owing to those properties, we can define quasi-
moments/cumulants. How to calculate series coefficients using those quasi-
cumulants is explained. In Section 5, we show the new technique for the
specific heat. Finally, we give a summary in Section 6.
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2. MODEL

Let us consider the spin-1/2 Heisenberg model,

H (p)
SU(2) :=2 C

(i, j)
Ji, j si · sj, (1)

where si is the spin operator at site i, and Ji, j is the coupling constant.
Here, (i, j) represents that the summation is performed only once for each
(i, j) pair. The spin operators are rewritten as

2si · sj=Pi, j − 1
2 , (2)

where Pi, j is an exchange operator defined by

Pi, j | · · · a
i

· · · b
j

· · ·P=| · · · b
i

· · · a
j

· · ·P, (3)

for arbitrary a=‘, a, and b=‘, a. Then, we can rewrite Eq. (1) as

H(p)
SU(2)= C

(i, j)
Ji, j

1Pi, j −
1
2
2 . (4)

This Hamiltonian has SU(2) symmetry. Since our method is valid more
generally for an SU(n) symmetric case with arbitrary positive integer n, we
define the SU(n) Heisenberg model below.

Let each site take one of the n colors, and denote them as |aP with
a=1, 2,..., n. An exchange operator is defined using Xab :=|aPOb| by

Pi, j := C
n

a=1
C
n

b=1
Xab

i Xba
j , (5)

for i ] j. Colors at sites i and j are exchanged by Pi, j, namely, Eq. (3) is
satisfied for arbitrary colors a and b. Furthermore, for a later convenience,
let us define

pi, j :=Pi, j −
1
n

. (6)

In the case of SU(2),

pi, j=2si · sj (7)

is satisfied. Although we mostly use expressions for general n in this paper,
we expect that Eq. (7) helps instant understanding of explanations. In some
cases, we explicitly use the SU(2) notation for a simple explanation.
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The Hamiltonian of the SU(n) Heisenberg model is given by

H (p) := C
(i, j)

Ji, j
1Pi, j −

1
n
2= C

(i, j)
Ji, j pi, j. (8)

The constant term just yields an energy shift. Hence, for calculating
thermal averages, we can use

H := C
(i, j)

Ji, jPi, j. (9)

We define the partition function as

Z :=Tr e−bH, (10)

and the free energy as

F := − b−1 ln Z. (11)

The average in this system is denoted by

OÔP :=Tr(Ôe−bH)/Z, (12)

where Ô is an arbitrary operator.
In the case of spin-1/2 system, there are three independent interacting

components, sx, sy, sz. In general, when there are n states per site, the
maximum number of independent interacting components is n2 − 1. The
model, isotropic with respect to these components, is the SU(n) Heisenberg
model as explicitly shown in Appendix A.

What we present in this paper is the high temperature expansion of
OPi, jP. A correlation function OXab

i Xba
j P is calculated using a relation,

OXab
i Xba

j P=
1

n2 − 1
1OPi, jP−

1
n
2 , (13)

for arbitrary a ] b, i ] j. In addition, when i=j,

OXab
i Xba

i P=
1
n

, (14)

for arbitrary a ] b. These relations are shown also in Appendix A. In the
case of SU(2), OXab

i Xba
j P=2Osz

i s
z
jP. The uniform susceptibility is equal to

inverse temperature times the Fourier transform of the correlation function
with wave-number zero. Furthermore, the specific heat is calculated from
the internal energy OHP=;(i, j) Ji, jOPi, jP.
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3. HIGH-TEMPERATURE EXPANSION

In this section, we review high-temperature expansion. Although the
Heisenberg model is used for explanation, this review is more general. That
is, one can easily replace the Heisenberg model with a different model.

3.1. Moments and Cumulants for Classical Variables

Fundamental properties of moments and cumulants are frequently
used in this paper. In order to conveniently refer to those properties, let us
review moments and cumulants of classical variables xi (i=1, 2,...). We
put most of the fundamental details of the review in Appendix B, and let
us here just show one important formula used frequently in this paper.
Here, a moment is denoted by Oxjxk · · · xlPx, and a cumulant is denoted by
[xjxk · · · xl]x.

Moments can be expanded using cumulants, and vice versa. However,
in those relations, the number of terms in the expansion drastically increases
as the order of moments or cumulants becomes higher. To avoid it, another
relation,

[xi · · · xa]x=Oxi · · · xaPx − C
P(t, 2)

[xi · · · xj]x Oxk · · · xmPx, (15)

can be used. (1) Here, t is the number of x-variables in the bracket in the
l.h.s. Then, the summation denoted by P(t, 2) is taken over every partition
of t elements into two groups on the condition that one of the variables,
for example xi, must always be included in [ · · · ]x. In addition, each
bracket includes at least one x-variable. In this paper, we call this formula
‘‘the mixed expansion pivoting on xi.’’ For example, the mixed expansion
of [x1x2x3]x pivoting on x1 is written as

[x1x2x3]x=Ox1x2x3Px − [x1x2]x Ox3Px − [x1x3]x Ox2Px − [x1]x Ox2x3Px.

3.2. Moments and Cumulants for Quantum Variables

As a reference system, we take a non-interacting system such that
Ji, j=0 for every (i, j) pair. Its partition function is written as Z0 :=Tr 1,
and the average in the non-interacting system is denoted by

OÔP0 :=
Tr(Ô)
Tr 1

, (16)
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where Ô is an arbitrary operator. This average O · · ·P0 plays a role of
O · · ·Px in the previous subsection.

There are a number of ways to define moments and cumulants of
quantum variables because of their noncommutativity.(5) One of the ways is
defining a moment by a symmetrized product,

OPi1, j1
Pi2, j2

· · · Pik, jk
Ps :=

1
k!

C
s

OPis(1), js(1)
Pis(2), js(2)

· · · Pis(k), js(k)
P0, (17)

where s represents a permutation of the indeces. Note that the ordering of
exchange operators Pi, j is unimportant in O · · ·Ps. Hereafter, we use O · · ·P0

rather than O · · ·Ps if they are obviously equivalent to each other, e.g.,
OPi, jPs=OPi, jP0; further examples are commented in Appendix C.

The partition function, Eq. (10), is rewritten as

Z=Tr 1
Tr e−bH

Tr 1
=Z0 Oe−bHP0. (18)

This averaged Boltzmann factor works as the generating function of the
symmetrized moments mentioned above, namely, with l i, j=−bJi, j,

OPi, j · · · Pk, lPs=
“

“l i, j
· · ·

“

“lk, l
Oe−bHP0

:
l=0

. (19)

The corresponding cumulants are denoted by [ · · · ]s, and given by

[Pi, j · · · Pk, l]s=
“

“l i, j
· · ·

“

“lk, l
ln Oe−bHP0

:
l=0

. (20)

These moments and cumulants have the properties explained in the pre-
vious subsection and Appendix B.

The free energy is rewritten as

F=−
1
b

ln Z0 −
1
b

C
.

m=1

(−b)m

m!
[Hm]s, (21)

[Hm]s= C
(i1, j1)

· · · C
(im, jm)

Ji1, j1
· · · Jim, jm

[Pi1, j1
· · · Pim, jm

]s. (22)

Many terms in the summation of Eq. (22) are equivalent because the
ordering of operators in [ · · · ]s is unimportant. That is, in the case of the
cumulant [Pk12

1, 2Pk23
2, 3 · · · ]s, then, m!/(k12! k23! · · · ) terms are equivalent.
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From Eqs. (21) and (22), we can derive

OPi, jP=
“F

“Ji, j

= C
.

m=1

(−b)m − 1

(m − 1)!

× C
(i1, j1)

· · · C
(im − 1, jm − 1)

Ji1, j1
· · · Jim − 1, jm − 1

[Pi, jPi1, j1
· · · Pim − 1, jm − 1

]s

= C
.

m=0

(−b)m

m!
[Pi, jH

m]s. (23)

Even if Ji, j=0 in the original Hamiltonian (e.g., for non-nearest neighbors
in the case of nearest-neighbor interaction), one can start from the general
formulation written above. After deriving all the formulae, one can put
Ji, j=J or 0 according to the original Hamiltonian.

Let us consider cumulants for pi, j instead of Pi, j. See the definition of
cumulants, Eq. (20). If one replaces Pi, j by pi, j, the generating function of
cumulants changes only by − 1/n ;(i, j) l i, j, and thus only the first-order
cumulants are affected by this replacement. In other words,

[Pi, j]s=OPi, jP0=1/n (24)

differs from

[pi, j]s=Opi, jP0=0. (25)

On the other hand, the higher order cumulants are equal. Namely,

[pi1, j1
pi2, j2

· · · pia, ja
]s=[Pi1, j1

Pi2, j2
· · · Pia, ja

]s (26)

when [ · · · ]s has two or more pi, j operators. For practical calculation, we
mainly use Pi, j for convenience. In some cases, however, the property
Opi, jP0=0 helps simplification. Hereafter, we use Pi, j and pi, j interchange-
ably with keeping in mind Eqs. (24)–(26).

3.3. Properties of the Cumulants

Let us introduce a diagrammatic representation of the moments and
the cumulants. Although we mainly use those diagrams for later calcula-
tion, let us define them here in advance because they are convenient also
for simple explanation in this review.
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Fig. 1. Examples of bond-diagrams.

Figure 1 shows examples of the diagrams for O< Pi, jPs and [< Pi, j]s.
We call them bond-diagrams. Each dot represents a site. A segment con-
necting sites i and j represents Pi, j, and we call it a bond. Note that a
product of two equivalent operators appearing in O · · ·Ps [e.g., P3, 4P3, 4 in
the r.h.s. of Fig. 1(a)] cannot be reduced to the identity because these are
not always next to each other in the symmetrization. Figure 1(a) is a
moment bond-diagram, and (b) is a cumulant bond-diagram.

A cumulant is equal to zero if the variables in [ · · · ]s can be parti-
tioned into two groups which are independent of each other on averaging
O · · ·P0. For example, [P1, 2P3, 4]s=0 because the trace of sites 1, 2 is taken
independently of that of sites 3, 4 in the non-interacting system. In other
words, a cumulant is equal to zero if the bond-diagram is not connected as
shown in Fig. 2(a). Here, a solid rectangle in Fig. 2 represents arbitrary
bonds. Therefore, as for cumulants, we consider only connected diagrams
hereafter.

Figure 2(b) is a first-order cumulant. In a higher-order cumulant bond-
diagram, more than one bonds must meet at each dot. If not, it is equal to
zero as shown in Figs. 2(c) and (d). Furthermore, a cumulant bond-
diagram is equal to zero if two parts in it are connected by only one bond
as shown in Fig. 2(e). We prove these properties in Appendix D.

3.4. An Example of the Finite Cluster Method

The finite cluster method (FCM) is a standard method for the high-
temperature expansion. (1, 2) It is also used for perturbative expansions

Fig. 2. Properties of the cumulants. A solid rectangle represents arbitrary bonds.
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starting from exactly solvable models. (3) In order to explain it in detail, we
give an explicit example using the one-dimensional nearest-neighbor inter-
acting system with a periodic boundary condition, namely, Ji, j=Jdj, i+1,
(1 [ i [ N), where the site N+1 is equivalent to site 1. In this case, the
procedure of the FCM is reduced to a very simple form.

In the FCM, series coefficients in the thermodynamic limit are exactly
obtained by summing contributions from finite-size clusters. The clusters
are subsets of the infinite lattice, and we need only connected clusters
because cumulant bond-diagrams must be ‘‘connected.’’ Namely, the one
dimensional system requires only open chains. The cluster of size a is
defined as

H (p)
a :=J C

a − 1

i=1

1Pi, i+1 −
1
n
2=J C

a − 1

i=1
pi, i+1, (27)

where we have chosen to use pi, j rather than Pi, j in order to make use of
[pi, j]s=0. The expectation value in this cluster is given by

Opi, jPa :=
Tr(pi, je−bH

(p)
a )

Tr(e−bH
(p)
a )

= C
.

m=0

(−b)m

m!
[pi, j(H

(p)
a )m]s. (28)

We assume i < j hereafter. Note that Opi, jPa=0 when i < 1 or j > a

because of a property shown in Figs. 2(c) and (d). Since a finite cluster is
used instead of the original system, Opi, jPa contains only a subset of terms
appearing in Opi, jP. The important point is that Opi, jPa includes contribu-
tions from clusters smaller than a, and thus simple summation of Opi, jPa

over a yields multiple counting of those terms. To avoid this, the FCM
requires subtraction of contributions from the smaller clusters. We define a
net contribution from the a-site cluster,

Opi, i+xP
−

a :=Opi, i+xPa − C
i − 1

a1=0
C
a − j

a2=0

Œ Op(i − a1), (i − a1)+xP
−

a − a1 − a2
, (29)

where the summation ;Œ excludes a1=a2=0. Here, a1 (a2) represents the
number of removed sites from the side of 1 (a). When i=1 and i+x=a,
this expression is reduced to Op1, aP

−

a=Op1, aPa. Let Opi, i+xP
−

[ a denote the
total net contribution to Opi, i+xP from clusters smaller than or equal to a,

Opi, i+xP
−

[ a := C
a

l=x+1
C
l − x

j=1
Opj, j+xP

−

l. (30)

Here, Opi, i+xP
−

[ a does not depend on i because of the translational symmetry.
Note that Opi, i+xP=Opi, i+xP

−

[ .. When a is finite, the series for Opi, i+xP
−

[ a
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is correct up to a finite order. To think about the ‘‘finite order,’’ let us take
a cumulant bond-diagram appearing in the mth order. The diagram has a
bond Pi, i+x and m bonds from the Hamiltonian. In order to give a nonzero
contribution, there must be at least one bond per nearest-neighbor pair
between i and j. Furthermore, nearest-neighbor pairs not between i and
i+x—less than i or greater than i+x—must have at least two bonds per
pair. Therefore, there is a contribution from (a+1)-site cluster when
m \ x+2(a − x). That is, Opi, i+xP

−

[ a is correct up to O[(bJ)2a − x − 1].
The above is the usual method of the FCM. However, in one dimension,

these equations can be reduced to simpler forms as shown in Appendix E.

4. A NEW METHOD FOR THE CORRELATION FUNCTION

Let us think about calculating the Fourier transform of the correlation
function,

Sz(q) :=
1

n2 − 1
C
x
Opj+x, jP e iqx. (31)

Series of Sz(q) up to O[(bJ)M] requires series of each Opj+x, jP up to
O[(bJ)M]. Here, the important point is that the series coefficients of
Opj+x, jP up to O[(bJ) |x| − 1] are equal to zero as explained in Fig. 2(c,d)
and in Section 3.4. Hence, we need Opj+x, jP only for 1 [ x [ M. In addi-
tion, that property provides us a weak point of the FCM: When M is fixed,
large x requires a larger cluster than small x does. Thus, the most time-
consuming part is calculation in the largest cluster, x=M, namely, cal-
culation of Tr (1+M){p1, 1+M(H(p)

1+M)M}. However, what we need for x=M
is only the Mth order coefficient because we already know that the lower
orders are equal to zero. Therefore, if only the FCM is used, the most time-
consuming calculation yields very little information.

Our goal in this paper to formulate a new method is as follows. If
the contributions from large clusters can be calculated by another method,
the FCM can be used only for smaller clusters. (6) Accordingly, one can
calculate up to high orders. In ref. 4, we have calculated Sz(q) up to
O[(bJ)19]. However, we have used the FCM only for a [ 13. The correc-
tions to the results have been calculated by the method explained in this
section.

4.1. Traces Using Combinatorics

We calculate traces of products of exchange operators by decomposing
every permutation into a product of independent cyclic permutations (7, 8) as
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explained in the following, (an explicit example is given in Appendix F).
Let us consider a trace of P :=Pi1, j1

Pi2, j2
· · · Pim, jm

, with Tr (a) denoting the
trace in the a-site system,

Tr (a) P := C
n

a1=1
· · · C

n

aa=1
Oa1

1
a2

2
· · · aa

a

| P |a1
1

a2
2

· · · aa

a

P

= C
n

a1=1
· · · C

n

aa=1
Oa1

1
a2

2
· · · aa

a

| aP1
1

aP2
2

· · · aPa

a

P

= C
n

a1=1
· · · C

n

aa=1
da1, aP1

da2, aP2
· · · daa, aPa

, (32)

where aPi refers to the color at position i after the permutation P. The
summation of ai makes a contribution only when ai=aPi for every i. Con-
sider using this relation successively starting from i. That is, ai is equal
to aPi, and then aPi is equal to aP2i,..., one can repeat this procedure until
coming back to ai at a certain power of P, namely, ai=aPi=aP2i

= · · · =ai. In other words, all the variables whose subscript belong to one
cyclic permutation in P have to be equal. Since any permutation can be
decomposed into a product of independent cyclic permutations, the
number of independent variables of the summation is the number Y(P) of
cyclic permutations of P. Therefore the trace is given by, Tr (a) P=nY(P),
and accordingly,

OPPa=
Tr(a) P
Tr (a) 1

=nY(P) − a. (33)

In fact, this method allows us to calculate Tr(a)(Pi, jP) at the same time
as Tr (a) P for an arbitrary (i, j) pair. (8) Let us remember the permutation P
is decomposed into cycles in calculating Tr(a) P. When the cycle which i
belongs to is different from what j belongs to, the next operation Pi, j unites
the two cycles into one. Then, the number of cycles decreases by one,
namely, Tr (a)(Pi, jP)=nY(P) − 1. On the contrary, if i and j belong to one
cycle of P, then Pi, j breaks the cycle into two. Then, the number of cycles
increases by one, namely, Tr (a)(Pi, jP)=nY(P)+1.

4.2. Explicit Calculation of Cumulants

To represent O< Pi, jP0, we introduce an unsymmetrized version of a
bond-diagram. Figure 3 shows its examples. Since this diagram is equiva-
lent to an ‘‘amida lottery,’’ used in Japan to peacefully decide how to dis-
tribute a fixed number of objects among an equal number of people, here
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Fig. 3. Examples of amida-diagrams.

we call it an amida-diagram. Each vertical line represents a site, and a
horizontal line between site i and j represents Pi, j. The order of horizontal
lines from bottom to top should coincide with the order of Pi, j in O · · ·P0

from right to left. We bracket an amida-diagram by O · · ·P in order to dis-
tinguish it from a cumulant version of the amida-diagram introduced later
in Section 5.

Since expectation values are not changed by transpositions of neigh-
boring commutative operators, the ordering of P1, 2 and P3, 4 is irrelevant
to the results. On the other hand, two exchange operators sharing one of
the site-indeces, such as P1, 2 and P2, 3, are not commutative, and in general
the ordering of those bonds affects the result. For example, the value of
Fig. 3(a) is different from that of (b). However, in some cases, even the
order of such ‘‘site-sharing’’ bonds does not affect the result. Let us think
about the value of an amida-diagram in Fig. 4(a) by counting cycles. The
‘‘initial’’ state is the identity permutation, which has a cycles. Then, every
time Pi, j is applied, it unites two cycles into one. After all the Pi, j operators
are applied, there is only one cycle, which includes all the a sites. Hence the
expectation value is n1 − a, and it does not depend on the ordering of those
Pi, j operators. Therefore, after the symmetrization, the moment bond-
diagram Fig. 4(b) also gives n1 − a.

Let us think about adding P1, a to Fig. 4(a) on the top. Since sites 1 and
a belong to the same cycle, the operation of P1, a cuts the cycle. Namely, the
permutation has two cycles and the diagram gives n2 − a. Again, after the
symmetrization, the corresponding moment bond-diagram also gives n2 − a.

In Fig. 5(a), we calculate a cumulant using the values derived above.
This is the lowest-order nonzero cumulant in the Op1, aP series. We use the

Fig. 4. Actual calculated values of diagrams. The dotted line represents a sequence of bonds
such that there is only one bond between sites.
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Fig. 5. The mixed expansion pivoting on P1, a for (a) the lowest-order and (b) the second-
lowest-order nonzero cumulants in the Op1, aP series. The dotted line represents a sequence of
bonds such that there is only one bond between sites.

mixed expansion, Eq. (15), pivoting on P1, a. The expression of the expan-
sion is very simple because [P1, a]s is the one and only nonzero cumulant
which includes P1, a.

Next, let us consider adding one more bond, P1, 2. The mixed expan-
sion pivoting on P1, a is shown in Fig. 5(b). The coefficient 2 of the last term
is due to the two ways of choosing which one of the two P1, 2 is put in
[ · · · ]s. The first term of the r.h.s. is calculated as shown in Fig. 6. The
symmetrization is equivalent to averaging over all the possible configura-
tions of bonds. In fact, however, the value of each amida-diagram is
determined only by relative configurations of two P1, 2 and one P2, 3. There
are only two patterns, namely, Figs. 6(b) and (c). Their r.h.s. are obtained
by simplification P1, 2P1, 2=1 and P1, 2P2, 3P1, 2=P1, 3. Here, an ‘‘W-shape’’
bond in Fig. 6(c) represents that the bond is not connected to the site at
‘‘W.’’ We already know how to calculate the r.h.s. of Figs. 6(b) and (c). We
also know that configuration of Pi, i+1 (i \ 3) does not affect the value of
the amida-diagram. That is, the value of the amida-diagram is determined
only by the position of P2, 3.

Fig. 6. Calculation of a symmetrized moment using amida-diagrams.
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In order to obtain the l.h.s. of Fig. 6(a), we have to count how often
each of the configurations Figs. 6(b) and (c) appears in the symmetrization.
For example, the prefactor 1/3 in the last term of Fig. 6(a) is obtained by

{the number of configurations of Fig. 6(c)}
{the total number of possible configurations}

. (34)

It can be considered like this: The vertical line of site 2 is partitioned into
three regions by the two P1, 2. The probability of finding P2, 3 in the inter-
mediate region is 1/3. More explicitly, it can be given also by integrals,

>1
0 dy12 >1

y12
dy −

12 >y Œ
12

y12
dy23

>1
0 dy12 >1

y12
dy −

12 >1
0 dy23

=
1
3

, (35)

where y12, y −

12, y23 represent positions of lower P1, 2, upper P1, 2, P2, 3, respec-
tively. Here, y=0 is the bottom, y=1 is the top. On the other hand, the
‘‘probability’’ of the other configuration Fig. 6(b) is 2/3. Consequently, the
symmetrized value is calculated as shown in Fig. 6(a). This formula is true
only when a \ 3. If a=2, we cannot take an average over position of P2, 3,
and Fig. 6(c) does not appear.

Examples of higher order results are shown in Fig. 7. We can find
simple properties in these cumulants.

(i) A cumulant is reduced by a factor 1/n as a increases by one.

(ii) A double bond in Fig. 7(a) yields a factor of ( n
3 − 2

n), two distant
double bonds in Fig. 7(d) yield square of this factor. In fact, we can make a

Fig. 7. Actual calculated values of cumulants.
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Fig. 8. A part of an amida-diagram. A bond can be deleted to yield a factor 1/n.

more general statement: When multiple bonds are distant, we can simply
make a product of contributions from each of multiple bonds.

We more rigorously derive property (i) in the next subsection and
property (ii) in the subsection after the next. After that, we formulate the
new method using those properties.

4.3. The ‘‘Contractible’’ Property

First, we consider a contraction of an amida-diagram. In an amida-
diagram, let us focus on a part that includes two sites as shown in Fig. 8.
Because of a property of a trace, the ordering of operators can be cyclically
rotated. In other words, amida-diagrams have a periodic boundary condi-
tion. Hence we can put a bond Pj, k at the bottom of the amida-diagram
without loss of generality. Let us compare the l.h.s. and the r.h.s. at each
position of bonds. In the l.h.s., the bottommost bond Pj, k unites two cycles
at sites j and k of the initial state, and makes a cycle of the two sites. At
this stage, nothing happens to the r.h.s., and there is a cycle at j. Then, the
rest of the operations of the l.h.s. and the r.h.s. are the same. That is,
Pi, j unites this cycle and another cycle; when Pk, l in the l.h.s. unites cycles
or breaks a cycle, Pj, l in the r.h.s. does the same thing. Therefore, the
number of cycles of the l.h.s. is equal to that of the r.h.s. As for the
denominator of the trace, the l.h.s. has one more site than the r.h.s. Hence,
in total, the r.h.s. needs a factor 1/n. The logic above is true even if site i is
the same as site l.

The symmetrization of all the operators except Pj, k is equivalent to the
symmetrization of all the operators as explained in Appendix C. Hence,
in all the terms in the symmetrization, one can put Pj, k at the bottom of
amida-diagrams and apply the contraction rule above. Therefore, we can
obtain a contraction property also for a moment bond-diagram as shown
in Fig. 9.

Fig. 9. Contraction of a moment bond-diagram.

A New Method of the High Temperature Series Expansion 1063



Fig. 10. Theorem I and its proof. A solid rectangle represents arbitrary bonds. In the expan-
sion, the bonds are partitioned into two groups, which are represented by split rectangles.

Finally, we prove that a cumulant bond-diagram has the same con-
traction property as the corresponding moment bond-diagram does. We
use a mathematical induction for the proof.

(i) The simplest nonzero cumulant, the l.h.s. of Fig. 5(a), has this
contraction property.

(ii) Let us think about a certain cumulant bond-diagram. We assume
that ‘‘the lower-order cumulant bond-diagrams have this contraction
property.’’ Then, we use the mixed expansion, Eq. (15), pivoting on one of
the bonds as shown in Fig. 10. We use this assumption for the third term.
The property of moments can be applied to the first and second terms.

Because of (i) and (ii), the contraction property is true for any cumulant
bond diagram that satisfies the condition. We call this relation Theorem I.

4.4. The ‘‘Detachable’’ Property

Some of the cumulants can be decomposed into a ‘‘background’’ and
local quantities. We give an example in Fig. 11.

Fig. 11. A cumulant can be decomposed into a ‘‘background’’ and local quantities. This
property is generally described by Theorem II later.
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Fig. 12. Theorem II. The details are explained in the text.

As already appeared several times, an intersite that has only one bond
plays a special role in this paper. We call it a single bond here. On the other
hand, an intersite that has more than one bond is called a multiple bond.

In this subsection, we prove Theorem II shown in Fig. 12. Here,
a solid rectangle represents arbitrary bonds. A dotted line stands for a
sequence of single bonds. The bond-diagram in the r.h.s. of (a) has the
same length as that of the l.h.s.; the bond-diagram in a denominator of (b)
has the same length as that of the numerator. This decomposition is pos-
sible even if the bond-diagram has more than two blocks of multiple bonds,
on condition that the number of single bonds should be greater than that
of blocks.

In other words, Theorem II is described as follows: a bond-diagram
can be rewritten by the product of a background and local quantities. The
background is obtained by replacing each multiple bond with a single
bond. One of the local quantities is obtained by replacing each multiple
bond with a single bond except those in that block, and dividing it by the
background.

4.4.1. Proof of a Lemma

For the proof, we introduce some notation. It is schematically shown in
Fig. 13. A diagram is denoted by G. Here, solid rectangle A (B) represents

Fig. 13. Definitions. A dotted line represents a sequence of single bonds. The details are
explained in the text.
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Fig. 14. The mixed expansion pivoting on Pi, j. The bonds are partitioned into two groups,
which are represented by split rectangles.

‘‘rectangle I (II) and a sequence of single bonds’’ in Fig. 12 unitedly. We
define GA (GB) as a diagram such that each multiple bond in B (A) of G is
replaced with a single bond. We define the ‘‘background’’ DG as a cumulant
bond-diagram such that each multiple bond in A and B of G is replaced
with a single bond. Hence, there is a relation, DG=DGA

=DGB
.

Let us consider the cumulant of G=Pi, j <k, l Pk, l. As is also shown in
Fig. 14, the mixed expansion pivoting on Pi, j is written as,

[G]s=C1(G)+C2(G), (36)

C1(G) :=OGPs − [Pi, j]s
7D

k, l
Pk, l

8
s
, (37)

C2(G) :=− C
else

5Pi, j D
kŒ, lŒ

PkŒ, lŒ
6

s

7 D
kœ, lœ

Pkœ, lœ
8

s
. (38)

That is, the second term of C1 is decomposition into Pi, j and the rest. The
other decompositions are included in C2. In C2, each cumulant includes
more than one exchange operators, and thus, to give a nonzero cumulant,
each site index has to appear at least twice as explained in Figs. 2(c) and
(d). In other words, each cumulant bond-diagram in C2 has to have a loop.

In order to prove Theorem II, we first prove a lemma,

C1(G)
DG

=
C1(GA)

DG

C1(GB)
DG

, (39)

in the following.
First, we give an explicit example of C1 using the cumulant in

Fig. 5(b). In Section 4.2, we have symmetrized each of the terms in the
mixed expansion individually. Here, however, we postpone the symme-
trization procedure. That is, as shown in Fig. 15, we first sum amida-
diagrams of the terms in C1 with a certain configuration of bonds. After
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Figure 15.

that, we symmetrize by averaging over all possible configuration of bonds.
We carry out the symmetrization of all the operators except P1, a—this is
equivalent to the symmetrization of all the operators as shown in Appen-
dix C. Let us consider Fig. 15(a). In the amida-diagram in the second term,
sites 1 and a belong to different cycles. Hence, when one more bond P1, a is
added (to make the amida-diagram of the first term), the two cycles are
united into one. Thus, the ratio of these amida-diagrams is 1/n, which is
equal to [P1, a]s in the second term. Accordingly, these terms cancel out
each other. Therefore, there is a nonzero contribution to C1 only when two
sites 1 and a belong to one cycle in the ‘‘amida-diagram without P1, a’’ in the
second term of C1. Hereafter, such a configuration is called a C1-finite
configuration. Figure 15(b) is a C1-finite configuration. Its contribution to
C1(GFig. 5(b)) is determined by ‘‘deviation from the background.’’ There is
an ‘‘extra’’ bond compared to the background, and here it increases the
number of cycles by one to make a factor n. On the other hand, the ‘‘pro-
bability’’ for this configuration to occur is 1/3 as shown in Eqs. (34) and
(35). Therefore we obtain C1(GFig. 5(b))=1

3 nDGFig. 5(b)
.

The example above is a simple case. In general, ‘‘the probability of the
configuration’’ times ‘‘the deviation from the background’’ is summed over
all the C1-finite configurations, namely,

C1(G)=DG C
C1-finite
config.

(probability) × (deviation). (40)

Let us consider a diagram G shown in Fig. 13. Then, in order to put sites 1
and a in one cycle in the ‘‘amida-diagram without P1, a’’ of G, each of GA

and GB must also have a C1-finite configuration. Then, the deviation from
the background as a whole is given by (deviation in A) × (deviation in B).
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Figure 16.

In fact, ‘‘probability’’ is also a product of those of A and B as shown
below. For example, the probability of configuration in Fig. 16(a) is written as

22 F
1

0
dy12 F

1

y12

dy −

12 F
y Œ

12

y12

dy23 F
1

0
dy45 F

1

y45

dy −

45 F
y Œ

45

y45

dy34. (41)

The first three integrals are independent of the last three integrals, and thus
the probability is written by the product of two parts. Next, let us think
about Fig. 16(b). If we naively use y, the expression of the integrals is
complicated. However, if we utilize the periodic boundary condition of y

and shift the integration variables as r :=y−y23 for y=y34, y −

34, y45, we obtain,

22 F
1

0
dy12 F

1

y12

dy −

12 F
y Œ

12

y12

dy23 F
1

0
dr34 F

1

r34

dr −

34 F
r Œ

34

r34

dr45. (42)

This expression is equivalent to Eq. (41). Hence the probability is written
by the product of two parts again. The important point in deriving Eq. (42)
is existence of P4, 5. Suppose the diagram does not have P4, 5, and has P1, 4

instead of P1, 5. The uppermost bond P1, 4 is always at y=1. If the integra-
tion variables are shifted, 1 − y23 appears in lower or upper bounds of the
integrals. That is, the integrals are not written by a product of two parts
any more in that case.

The shift of the integration variables mentioned above can generally
be applied to any blocks A and B. Hence, the probability in Eq. (40) is also
a product of those of A and B. The summation over C1-finite configuration
is double summation over C1-finite configuration of A and over C1-finite
configuration of B. Therefore,

C1(G)
DG

= C
C1-finite
config. A

(probability A)(deviation A)

× C
C1-finite
config. B

(probability B)(deviation B)

=
C1(GA)

DGA

C1(GB)
DGB

. (43)

By using DG=DGA
=DGB

, we obtain the lemma, Eq. (39).
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Note that the shift of the integration variables mentioned above can
be applied even if a diagram has more than two blocks of multiple bonds.
A block and a single bond is regarded as one group whose members have
a common shift of the integration variables. This is the reason for the
restriction of Theorem II; the number of single bonds should be greater
than that of blocks.

4.4.2. Proof of Theorem II

In order to focus on the ‘‘multiple bond’’ region, we introduce another
notation for moments and cumulants. Let us think about GA. A set of
bonds, A, is partitioned into two subsets in calculating C2(GA). Let a
denote a subset of A. Then, Q(a) denotes the cumulant in which A is
replaced by a. In choosing a, at least one bond per intersite must be chosen
to make Q(a) nonzero. A moment for bonds A − a is denoted by M(A − a).
Then, Eq. (36) for GA can be rewritten as

Q(A)=C1(GA) − C
a v A

Q(a) M(A − a). (44)

The l.h.s. is equal to the excluded term a=A in the summation in the r.h.s.
because M(”)=O1P0=1. Therefore, we obtain

C1(GA)= C
a ˜ A

Q(a) M(A − a). (45)

The corresponding equation for graph G is

C1(G)
D

= C
a ˜ A

C
b ˜ B

Q(a+b)
D

M(A − a+B − b). (46)

Since A is not connected to B,

M(A − a+B − b)=M(A − a) M(B − b). (47)

On the other hand, according to the lemma and Eq. (45),

C1(G)
D

=
C1(GA)

D

C1(GB)
D

= C
a ˜ A

C
b ˜ B

Q(a)
D

Q(b)
D

M(A − a) M(B − b). (48)

Here, we use a mathematical induction again for the proof.
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(i) Theorem II is true when there are two extra bonds on the back-
ground as explicitly calculated in Fig. 7(d).

(ii) We assume that Theorem II is true when the number of extra bonds
on the background is less than that of G. According to the assumption,

Q(a+b)
D

=
Q(a)

D

Q(b)
D

, (a+b v A+B). (49)

Combine the r.h.s. of both Eqs. (46) and (48), use Eqs. (47) and (49). Then,
all the terms except for (a, b)=(A, B) cancel out and we obtain

Q(A+B)
D

=
Q(A)

D

Q(B)
D

. (50)

According to (i) and (ii), Theorem II is true for any G that satisfies the
conditions.

The proof mentioned above can be applied even if block A or B
includes single bonds. Then, Theorem II for a diagram with two blocks is
repeatedly used to prove Theorem II for a diagram with more than two
blocks. Therefore, also a diagram with more than two blocks has the
‘‘detachable’’ property as mentioned first.

4.4.3. Theorem I Œ

Now that Theorem II is proved, the contraction can be written in a
more general form. Although Theorem I is for a sequence of three single
bonds, sequences of two single bonds also can be contracted as shown in
Fig. 17 as Theorem IŒ, on condition that each block must be separated by
at least one single bond and two of the blocks must be separated by a
sequence of at least two single bonds. The Theorem IŒ is easily proved using
Fig. 12(a); contract DG in the r.h.s. and reversely use the same relation to
the contracted diagram.

4.5. The Quasi-Cumulant Method

Apart from the restriction, Theorem II is equivalent to a property of
moments—a disconnected moment is equal to a product of connected

Fig. 17. Theorem IŒ.
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moments. In order to effectively use Theorem II, we define quasi-moments
and corresponding quasi-cumulants below. Our definition of a quasi-
moment is a factor times a ‘‘local quantity’’ in Theorem II. Although
another definition can be the local quantity itself, it is less convenient for
our purpose as discussed in Appendix G.

Let us think about the one-dimensional system again. We define the
generating function of quasi-moments as

G (i, j)
qm :=

1
l i, i+1l i+1, i+2 · · · lj − 1, j

Opi, jP

[Pi, j Pi, i+1Pi+1, i+2 · · · Pj − 1, j]s
. (51)

Only up to a finite order, Theorem II can be applied and Gqm works as a
generating function. The larger |i − j| is, the higher order Theorem II is
valid up to. Here, we assume that |i − j| is large enough, and forget about
this restriction for the time being. It will be commented on later. Then, the
quasi-moments are defined as

OPk, l · · · Py, zPq :=
“

“lk, l
· · ·

“

“ly, z
G (i, j)

qm
:
l=0

. (52)

The zeroth-order quasi-moment satisfies O1Pq=1. Some examples of quasi-
moments are shown in Fig. 18. More explicitly, the quasi-moments are
obtained by

OPm1
1, 2Pm2

2, 3 · · · Pmk − 1
k − 1, kPq

=
[Pm1+1

1, 2 Pm2+1
2, 3 · · · Pmk − 1+1

k − 1, k Pk, k+1P1, k+1]s

(m1+1)(m2+1) · · · (mk − 1+1)[P1, 2P2, 3 · · · Pk − 1, kPk, k+1P1, k+1]s
,

(53)

where we have assumed that all the bonds are on the ‘‘background.’’ We
need a special care when Pk, l is outside the background, namely, k < i or

Fig. 18. Examples of quasi-moments.
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j < l in the case of G (i, j)
qm . Such a operator is explicitly denoted by P (o)

k, l.
Then, we can more generally write as,

O(P (o)
1, 2)m1 · · · (P (o)

i − 1, i)
mi − 1 Pmi

i, i+1 · · · Pmk − 1
k − 1, kPq

=
[(P (o)

1, 2)m1 · · · (P (o)
i − 1, i)

mi − 1 Pmi+1
i, i+1 · · · Pmk − 1+1

k − 1, k Pk, k+1Pi, k+1]s

(mi+1) · · · (mk − 1+1)[Pi, i+1 · · · Pk − 1, kPk, k+1Pi, k+1]s
. (54)

Next, using quasi-moment defined above, the generating function of
quasi-cumulants is defined as,

G (i, j)
qc :=ln G (i, j)

qm . (55)

Then, the quasi-cumulants are defined by,

[Pk, l · · · Py, z]q :=
“

“lk, l
· · ·

“

“ly, z
G (i, j)

qc
:
l=0

. (56)

According to Theorem II, when none of k or l is equal to y or z,

7exp 5C
k, l

lk, lPk, l+C
y, z

ly, zPy, z
68

q

=7exp 5C
k, l

lk, lPk, l
68

q

7exp 5C
y, z

ly, zPy, z
68

q
, (57)

and thus, as discussed in Appendix B,

5D
k, l

Pk, l D
y, z

Py, z
6

q
=0. (58)

Therefore, only ‘‘connected’’ quasi-cumulants remain nonzero. If only the
quasi-moments are used, we have to classify connected and disconnected
quasi-moments. However, if the quasi-cumulants are used, we need only
connected quasi-cumulants and can avoid the complicated classification.

Suppose we set lk, l=l for every (k, l) pair. Then, G (i, i+x)
qc (x > 0) is a

function of x and l. The quasi-cumulants have a translational symmetry in
the background. For example, [Pm

i, i+1]q=[Pm
i+1, i+2]q= · · · =[Pm

i+x − 1, i+x]q;
and thus, these ‘‘length-1’’ quasi-cumulants can be summed up to
x[Pm

i, i+1]q in G (i, i+x)
qc . If we in the same way simplify G (i, i+x)

qc , length-2 quasi-
cumulants are multiplied by x − 1, length-3 quasi-cumulants are multiplied
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by x − 2, and so on. The quasi-cumulants including P (o)
k, l are located at both

ends, and thus, they are multiplied by two. Namely,

G (i, i+x)
qc =G (x)

m +Gend
m +O(lm+1), (59)

G (x)
m :=x C

1 [ m1 [ m

lm1

m1!
[Pm1

i, i+1]q

+(x − 1) C
1 [ m1, m2

m1+m2 [ m

lm1+m2

m1! m2!
[Pm1

i, i+1Pm2
i+1, i+2]q

+ · · · +(x − m+1) lm[Pi, i+1 · · · Pi+m − 1, i+m]q, (60)

Gend
m := 2 C

2 [ m1 [ m

lm1

m1!
[(P (o)

i − 1, i)
m1]q

+2 C
2 [ m1, 1 [ m2
m1+m2 [ m

lm1+m2

m1! m2!
[(P (o)

i − 1, i)
m1 Pm2

i, i+1]q

+2 C
2 [ m1, m2

m1+m2 [ m

lm1+m2

m1! m2!
[(P (o)

i − 2, i − 1)m1 (P (o)
i − 1, i)

m2]q+ · · · . (61)

Hence, this expression for arbitrary x can be derived if we obtain all the
quasi-cumulants up to mth order, which are calculable in small systems.
Therefore, we can obtain Opi, i+xP up to (x+m)th order for arbitrary x by
tracing back Eqs. (59)–(61), (55), and (51). We call this method the quasi-
cumulant method (QCM).

The QCM has been done by a brute-force program of Mathematica.
The quasi-cumulants can be calculated by Eq. (56), that is, differentiating
the series of their generating function with respect to corresponding Ji, i+1,
where Ji, i+1 are coupling constants of the Hamiltonian of a rather general
form, ;i Ji, i+1Pi, i+1. We take the system as small as possible on condition
that it be large enough to correctly calculate those quasi-cumulants. That
is, quasi-cumulants of length l can be obtained in the system of length l+1.
First, we calculate the series of Opi, jP to obtain G (i, j)

qm up to mth order. At
each order of calculating Hk, we exclude terms irrelevant to the derivative
in order to save computational time and memory. Let us rewrite G (i, j)

qm as

G (i, j)
qm = C

m

k=0

(−b)k

k!
OHkPq+O(bm+1), (62)
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Fig. 19. Theorem II is not valid for these diagrams.

then, Eq. (15), the mixed expansion pivoting on one of H can be used,

[Hk]q=OHkPq − C
k − 1

l=1

(k − 1)!
(l − 1)! (k − l)!

[H l]q OH
k − lPq, (63)

G (i, j)
qc = C

m

k=1

(−b)k

k!
[Hk]q+O(bm+1). (64)

Now we are ready for the derivatives. The point is that we need at most
m+2 sites here, while we can reconstruct the generating function of larger
systems from the quasi-cumulants and thus we can obtain Opi, i+xP up to
(x+m)th order arbitrary x.

Finally, we comment on the restriction of the QCM. The QCM is
based on Theorem II. Let us consider diagrams shown in Fig. 19. We
cannot apply Theorem II to these diagrams, and thus Eq. (57) is not valid.
However, we can apply Theorem II if the order is lower than these. Hence,
we can use Eqs. (59)–(61), only for m [ x/2 (x: even) or m [ (x − 1)/2
(x: odd).

Note that the QCM is useful for contributions from large clusters
rather than those from small clusters. Hence, by combining the QCM with
the FCM, we can calculate the high-temperature series coefficients up to a
high order. Figure 20 shows which of the FCM and the QCM was used
to obtain the series coefficients in ref. 4. We calculated Opi, i+xP up to
(x+6)th order for x \ 13 by the QCM. Note that the QCM results are
valid for arbitrary x \ 13, including the x Q . limit as indicated in Fig. 20.
The reason why we stopped the QCM at this order was mainly due to the
FCM. If the FCM can treat larger systems, the restriction of Theorem II is
less important, and the QCM can go further. Our FCM program was for
general SU(n); we expect that more terms can be obtained if the interest is
restricted to SU(2) in making the FCM program.

In ref. 4, the largest cluster we used for the FCM was composed of
a=13 sites. As noted in the context of Eq. (30), Opi, i+xP

−

[ a is correct only
up to O[(bJ)2a − x − 1], and higher orders include contributions from the
larger clusters. Hence, for high-order coefficients of x [ 12, corrections to
the FCM results must be calculated. The QCM can be used also for this
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Fig. 20. We obtained high-temperature series coefficients of Opi, i+xP using the FCM and the
QCM complementarily. The figure shows which method was used for each series coefficient.
Though we have used only all the coefficients up to O[(bJ)19], the QCM results are valid for
arbitrary x \ 13.

purpose because these corrections are a subset of the terms obtained by the
QCM. We put a fictitious coefficient on each quasi-cumulant located at
both ends in Eq. (61). These fictitious coefficients carry information about
the cluster-size of a cumulant, and we can distinguish terms needed for the
corrections to the FCM result. Coefficients obtained by this procedure in
ref. 4 are indicated by ‘‘FCM+QCM’’ in Fig. 20.

Since these series coefficients are obtained as explicit functions of n,
the data of the series coefficients are too numerous to be fully listed in this
paper. Hence, we list here only the results of the QCM, Opi, i+xP up to
(x+6)th order, and the other data will be provided on request. The coef-
ficients of the series

Opi, i+xP=n−1 − x(− 1+n2) C
m

px, m (−bJ)m (65)

are given in the following:

px, x=1 (x \ 1), (66)

px, x+1=
(− 6+n2) x

6n
(x \ 2), (67)
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px, x+2=
n−2

360
[5x2(− 6+n2)2 − 6x(− 30+15n2+2n4)+n2(− 150+7n2)]

(x \ 4), (68)

px, x+3=
n−3

45360
[35x3(− 6+n2)3 − 126x2(180 − 120n2+3n4+2n6)

+2x(− 7560+17010n2 − 2961n4+302n6)

+24n2(945+21n2 − 20n4)] (x \ 6), (69)

px, x+4=
n−4

5443200
[175x4(− 6+n2)4 − 1260x3(− 6+n2)2 (− 30+15n2+2n4)

+2x2(1247400 − 1965600n2+519750n4 − 48210n6+6817n8)

− 6x(− 226800+1020600n2 − 297990n4 − 36795n6+5468n8)

+9n2(− 352800+212520n2 − 14850n4+3287n6)] (x \ 8),
(70)

px, x+5=
n−5

359251200
[385x5(− 6+n2)5 − 4620x4(− 6+n2)3 (− 30+15n2+2n4)

+44x3(− 2381400+3572100n2 − 1260630n4

+147915n6 − 16461n8+2021n10)

− 66x2(2268000 − 6350400n2+2891700n4

− 101940n6 − 53013n8+6496n10)

+2x(− 35925120+264448800n2 − 182037240n4

+17223030n6 − 3830673n8+517472n10)

− 36n2(− 6652800+7983360n2 − 60720n4 − 165099n6+27776n8)]

(x \ 10), (71)

px, x+6=
n−6

5884534656000
[175175x6(− 6+n2)6

− 3153150x5(− 6+n2)4 (− 30+15n2+2n4)

+5005x4(− 6+n2)2 (3855600 − 4725000n2+982800n4

+18870n6+18947n8)

− 6006x3(− 306180000+731430000n2 − 413229600n4+58660200n6
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+2763810n8 − 1239825n10+126908n12)

+13x2(172260950400− 745940210400n2

+577975305600n4 − 101282227200n6

+6937664580n8 − 2448983250n10+265586033n12)

− 6x(− 163459296000+1777619844000n2 − 2058679022400n4

+396577981800n6+31224022830n8

− 11642353905n10+1392291386n12)

+135n2(− 32691859200+61509127680n2

− 15679984320n4+695398704n6

− 446293302n8+62451523n10)] (x \ 12). (72)

Even for a [ 12, the QCM is valid for a number of series coefficients,
and should coincide with the results of the FCM or the ‘‘FCM+QCM.’’
We have used this property for checking whether the computer codes are
correct.

5. A TECHNIQUE FOR THE SPECIFIC HEAT

Our strategy for the specific heat in ref. 4 was similar to that for the
correlation functions. That is, the most time-consuming part of the FCM is
calculated by another method instead. If only the FCM is used, the series
for OPi, i+1P up to O[(bJ)M] requires systems with a [ M/2+1 (M: even)
or a [ (M+1)/2+1 (M: odd). In ref. 4, we calculated OPi, i+1P up to
O[(bJ)22]. However, the FCM was used only for a [ 11; contributions
from the required largest cluster, namely, the lowest- and the second-lowest-
order nonzero contribution from a cluster, was directly calculated by a new
technique explained below.

In fact, we can use O · · ·P0 as a moment and define a cumulant (9)

without the symmetrization. The generating functions of the moments and
the cumulants are defined as

G
i1, j1,..., ik, jk
0m :=Oel1Pi1, j1el2Pi2, j2 · · · elkPik, jkP0, (73)

G
i1, j1, i2, j2,..., ik, jk
0c :=ln G

i1, j1, i2, j2,..., ik, jk
0m , (74)
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respectively. Then, OPi1, j1
· · · Pik, jk

P0 works as a moment, and the corre-
sponding cumulant is define by

[Pi1, j1
· · · Pik, jk

]0 :=
“

“l1
· · ·

“

“lk
G

i1, j1,..., ik, jk
0c

:
l=0

. (75)

Here, the ordering of exchange operators in [ · · · ]0 is important. In other
words, the result can be changed by exchanging positions of uncommuta-
tive operators. Note that simplification such as P1, 2P1, 2=1 is not possible
in [ · · · ]0 while it is possible in O · · ·P0. In expanding the cumulants using
the moments, the ordering of operators in O · · ·P0 must be the same as that
in [ · · · ]0, for example, [P1, 2P2, 3]0=OP1, 2P2, 3P0 −OP1, 2P0 OP2, 3P0. This
cumulant is represented by the cumulant version of an amida-diagram.
Hereafter, we distinguish between a moment amida-diagram and a
cumulant amida-diagram by bracketing the diagram by O · · ·P and [ · · · ],
respectively.

The free energy is rewritten as

F=−
1
b

ln Z0 −
1
b

C
.

m=1

(−b)m

m!
[Hm]0, (76)

[Hm]0= C
(i1, j1)

· · · C
(im, jm)

Ji1, j1
· · · Jim, jm

[Pi1, j1
· · · Pim, jm

]0. (77)

These are equivalent to Eqs. (21) and (22) except for the subscript ‘‘0’’
replacing ‘‘s.’’ Here, however, the cumulants are generally dependent on the
ordering of the operators while ‘‘s’’ makes many terms equivalent.

We can use general property of moments and cumulants again. If,

7D
k

exp[lkPik, jk
] D

l
exp[l lPil, jl

]8
0

=7D
k

exp[lkPik, jk
]8

0

7D
l

exp[l lPil, jl
]8

0
, (78)

then, the derivative of its logarithm gives,

5D
k

Pik, jk
D

l
Pil, jl

6
0
=0. (79)

When none of ik or jk is equal to il or jl, this relation is obviously satisfied.
Furthermore, the cumulant is equal to zero also when an amida-diagram is
separated into two diagrams by cutting only one point on a vertical line
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Fig. 21. Bonds are located only in the painted regions. When an amida-diagram can be
separated into two diagrams by cutting only one point on a vertical line (indicated by an
arrow), the left and right blocks are independent of each other.

as shown in Fig. 21. For example, the cumulant versions of the amida-
diagrams in Figs. 3(a) and (b) are equal to zero. Let us think about the
moment amida-diagram, Fig. 21(a), where bonds are located only in the
painted regions. Bonds located left of t are denoted by Pil, jl

, and those
located right of t are denoted by Pir, jr

. The diagram can be written as
O<l Pil, jl

<r Pir, jr
P0 by exchanging positions of commutative Pil, jl

and
Pir, jr

. Let us imagine calculating each of <l Pil, jl
and <r Pir, jr

by counting
cycles, and make the product of these two at the end. This final operation
unites the two cycles relevant to t into one cycle because <l Pil, jl

and
<r Pir, jr

are sharing only one site t. Hence, the number of cycles in the
l.h.s. is less than that in the r.h.s. ‘‘by one.’’ However, the number of
sites in the l.h.s. is also less than that in the r.h.s. ‘‘by one.’’ As a result,
the l.h.s. is equal to the r.h.s. We can make the same argument to
O<l el lPil, jl <r elrPir, jrP0. Therefore, [<l Pil, jl

<r Pir, jr
]0=0.

Here, we must be careful about the periodic boundary condition of
amida-diagrams. If a diagram satisfies the condition above by using the
periodic boundary condition, the amida-diagram is also equal to zero. We
give an example in Fig. 22. At a sight, [P1, 2P2, 3P2, 3P1, 2]0 does not satisfy
the condition above. However, it is equivalent to [P1, 2P1, 2P2, 3P2, 3]0=0.

Suppose there are two bonds per nearest-neighbor pair as shown
in Fig. 24. It is a contribution from cluster-size a for O[(bJ)2(a − 1) − 1] of
OPi, i+1P, or equivalently, O[(bJ)2(a − 1)] of the free energy. Because of the
property mentioned above, many configurations of bonds make cumulant

Figure 22.
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amida-diagrams equal to zero. In order to give a nonzero contribution, at
each vertical line bonds at left and right have to appear alternately. We can
make such diagrams by repeating a enlarging procedure shown in Fig. 23.
That is, there are two possibilities for next bonds. In fact, the value of such
a cumulant amida-diagram does not depend on those configurations as
explained in Appendix H. Hence, we can just multiply the value of the
cumulants by the probability for such nonzero configurations. We have
calculated the probability by Mathematica using integrals like Eqs. (35)
and (41).

The values of the cumulants are shown in Fig. 24. Namely, the
cumulant is equal to (1 − n−2) when a is an even number, and − (1 − n−2)
when a is an odd number. We can prove this by using the mixed expansion
pivoting on one of P1, 2 shown in Fig. 25. The first term is the moment. The
second term is [P1, 2] times the moment of the others. The rest of the terms
are obtained by separating the diagram at sites from 2 to a − 1. In fact, only
the last term survives and every term else cancels out one another. When a

is an even number, the sum of the first, second and third terms, the sum of
the fourth and fifth terms,..., are equal to zero. When a is an odd number,
the sum of the first and second terms, the sum of the third and fourth
terms,..., are equal to zero. The details are explained in Appendix H.

We can calculate also the next order by the same technique as above.
Now, one of the nearest-neighbor pairs has three bonds. The value of the
cumulant amida-diagram does not depend on the position of this triple
bond as shown in Fig. 26. That is, the cumulant is equal to − 2

n (1 − 1
n2 ) when

a is an even number, and equal to 2
n (1 − 1

n2 ) when a is an odd number.

6. SUMMARY

We have formulated a new method of high-temperature series expan-
sion using the SU(n) Heisenberg model. It is designed for efficiently cal-
culating contributions from large clusters, which is actually the most time-
consuming part of a standard method. The net contributions from a cluster
to high-temperature series start from a certain order. We have focused on
this property, and considered deviation from the lowest-order nonzero
contribution.

Although we have mainly used one-dimensional systems to explain the
new method, many of the techniques can be used also in higher dimensions.
In contrast to one-dimensional systems, however, the calculation requires
various clusters, and some of the clusters are unsuitable for our method.
Figure 27 shows an example. The main advantage to use our method is
that diagrams can be reduced to smaller diagrams. However, we cannot
apply it to a cluster in Fig. 27 because it has many sites at which more
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Figure 23.

Figure 24.

Figure 25.

Figure 26.

Fig. 27. An example of clusters unsuitable for our method.
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than two bonds meet, and chains connecting those sites are too short.
Nevertheless, the number of embeddings of such unsuitable clusters in the
infinite lattice is small, and thus contributions from them are usually small.
In fact, the number of embeddings of open chains, the most preferable
clusters for our method, is the largest. Hence, the dominant contributions
can be calculated by our method.

We expect that similar approaches are possible also for other models,
namely, for Hamiltonians of lower symmetries.

APPENDIX A. RELATIONS DERIVED FROM THE ISOTROPY

For example, using n2 − 1 generators such as

Xab :==n
2

(Xab+Xba) (1 [ a < b [ n), (A1)

Yab :=− i =n
2

(Xab − Xba) (1 [ a < b [ n), (A2)

D (a) :== n
a(a − 1)

1 C
a − 1

c=1
Xcc − (a − 1) Xaa2 (2 [ a [ n), (A3)

the exchange operator is rewritten as

nPi, j= C
1 [ a < b [ n

(Xab
i Xab

j +Yab
i Yab

j )+ C
2 [ a [ n

D (a)
i D (a)

j +1. (A4)

Let us prove that each component contributes equally, namely,

OXab
i Xab

j P=OYab
i Yab

j P=OD (a)
i D (a)

j P=
nOPi, jP− 1

n2 − 1
. (A5)

(i) The Hamiltonian is invariant under re-labeling of colors. There-
fore, OXab

i Xab
j P does not depend on a or b.

(ii) OXab
i Xab

j P=OYab
i Yab

j P for arbitrary a, b, because these X, Y

operators are x, y components of Pauli matrix (× `n/2) regarding only a

and b.

(iii) We can apply the same argument also for z-component, and thus
OXab

i Xab
j P=OD (2)

i D (2)
j P.

(iv) By a direct calculation using

OXaa
i Xaa

j P=OX11
i X11

j P
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for arbitrary a, and

OXaa
i Xbb

j P=OX11
i X22

j P

for arbitrary a ] b, we can derive

OD (a)
i D (a)

j P=n(OX11
i X11

j P−OX11
i X22

j P)=OD (2)
i D (2)

j P

for arbitrary a.

From (i)–(iv), we obtain Eq. (A5).
Using Eq. (A5), we can derive

OXab
i Xba

j P=
1
n
OXab

i Xab
j P=

1
n2 − 1

1OPi, jP−
1
n
2 , (A6)

for a ] b, i ] j.
In addition, for i=j, since the average of |aPOa| does not depend on a,

OXab
i Xba

i P=O|a
i
POa

i
|P=

1
n

C
n

c=1
O|c

i
POc

i
|P. (A7)

Then, using

C
n

c=1
|c

i
POc

i
|=1, (A8)

we obtain

OXab
i Xba

i P=
1
n
O1P=

1
n

. (A9)

APPENDIX B. MOMENTS AND CUMULANTS FOR CLASSICAL

VARIABLES

In this section, we review fundamental properties of moments and
cumulants of classical variables xi (i=1, 2,...). Note that some other
properties are written in Section 3.1. Here, the expectation value with
respect to the distribution of {xi} is denoted by O · · ·Px. The generating
function of moments is defined as

Oe ; i l i xiPx. (B1)
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That is, the moments are derived by

Oxjxk · · · xlPx=
“

“lj

“

“lk
· · ·

“

“l l
Oe ; i l i xiPx

:
l=0

, (B2)

where the subscript l=0 represents that all the l-variables are set to zero.
On the other hand, cumulants are denoted by [ · · · ]x and defined as

[xjxk · · · xl]x=
“

“lj

“

“lk
· · ·

“

“l l
ln Oe ; i l i xiPx

:
l=0

. (B3)

Namely, the generating function of the cumulants is written as

ln Oe ; i l i xiPx=[e ; i l i xi − 1]x. (B4)

A cumulant is equal to zero if the variables in [ · · · ]x can be parti-
tioned into two groups which are independent of each other in averaging
O · · ·Px. Suppose {xi} is independent of {xj}. Let us in advance set lk to
zero if xk is not included in either {xi} or {xj}. Then,

Oe ; i l i xi+; j lj xjPx=Oe ; i l i xiPx Oe ; j lj xjPx.

By taking the logarithm, we obtain

ln Oe ; i l i xiPx+ln Oe ; j lj xjPx.

That is, the generating function of the cumulants does not have any term
which has a product of l i and lj. Thus, the corresponding cumulant is
equal to zero.

There are relations between moments and cumulants. Moments can be
expanded using cumulants, for example,

Ox1Px=[x1]x,

Ox1x2Px=[x1x2]x+[x1]x [x2]x,

Ox1x2x3Px=[x1x2x3]x+[x1x2]x [x3]x+[x1x3]x [x2]x

+[x1]x [x2x3]x+[x1]x [x2]x [x3]x.

These relations are generally written as

Oxi · · · xlPx=C
z

C
P(t, z)

[xi · · · xj]x · · · [xk · · · xm]x. (B5)
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These summations include every partition of x-variables. Here, t is the
number of x-variables in the bracket in the l.h.s. Then, the summation
denoted by P(t, z) is taken over every partition of t elements into z groups
(1 [ z [ t). In other words, z is the number of brackets [ · · · ]x in the r.h.s.
Here, each [ · · · ]x includes at least one x.

Conversely, cumulants can be expanded using moments, for example,

[x1]x=Ox1Px,

[x1x2]x=Ox1x2Px −Ox1Px Ox2Px,

[x1x2x3]x=Ox1x2x3Px −Ox1x2Px Ox3Px −Ox1x3Px Ox2Px

−Ox1Px Ox2x3Px+2Ox1Px Ox2Px Ox3Px.

In general, Eq. (B5) is inverted to

[xi · · · xa]x=C
z

C
P(t, z)

(−1)z − 1 (z − 1)! Oxi · · · xjPx · · ·Oxk · · · xmPx. (B6)

APPENDIX C. SYMMETRIZATION

Let us consider expanding Hm. It includes all the orderings of Pi, j

operators. In other words, it is already symmetrized. Therefore,

OHmPs=OHmP0. (C1)

Accordingly,

Oe−bHPs=Oe−bHP0. (C2)

Because of a a property of trace, one can cyclically rotate variables in
the average. In each term of the symmetrization, let us put a certain operator,
for example Pik, jk

, at the leftmost. Then, k terms give the same ordering.
Namely,

C
s

OPis(1), js(1)
Pis(2), js(2)

· · · Pis(k), js(k)
P0

=k 7Pik, jk
C
s̃

Pi s̃(1), j s̃(1)
Pi s̃(2), j s̃(2)

· · · Pi s̃(k − 1), j s̃(k − 1)
8

0
, (C3)

where s̃ is a permutation of k − 1 elements. The factor k cancels out k in k!
in Eq. (17). That is, the symmetrization of all the operators except one is
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equivalent to the symmetrization of all the operators. Therefore, OPi, jH
mP0

is also already symmetrized, and thus

OPi, je−bHPs=OPi, je−bHP0. (C4)

APPENDIX D. PROOFS FOR CUMULANTS

Here, we prove properties of cumulants in Fig. 2. For a simplicity, we
use the SU(2) notation here. However, for general SU(n), one can easily
replace spin operators below by Xab

i , Yab
i , D (a)

i in Appendix A.
In order to consider Figs. 2(c) and (d). Let us expand the l.h.s. of

Eq. (26) using moments, namely, in terms of Eq. (B6). Then, let us rewrite
the pi, j operators using spin operators in terms of Eq. (7). If a site index i
appears only once in [ · · · ], every term in the expansion is equal to zero
because the average at site i is evaluated as Osx

i P0=Osy
i P0=Osz

iP0=0.
Consequently, the cumulant is equal to zero.

Note that, in contrast to the Ising model, a moment bond-diagram
in which an odd number of bonds meet at a site can give nonzero value
because a product of three operators can give nonzero average, for
example, Osx

i sx
j sy

i sy
j sz

i s
z
jP0.

Next, we prove Fig. 2(e). After Section 4.4.1 is explained, this property
can be easily proved. Let us think about the mixed expansion pivoting on
the bond in the center. Then, C1 is equal to zero because this middle bond
always unites two cycles. Furthermore, C2 in Eq. (36) is equal to zero
because every cumulant in it is equal to zero.

APPENDIX E. SIMPLE FCM FORMULAE IN ONE DIMENSION

In one dimension, the equations in Section 3.4 can be reduced to
simpler forms as shown below. From Eq. (29), we can derive

Opi, jP
−

a=Opi, jPa −Opi, jPa − 1 −Opi − 1, j − 1Pa − 1+Opi − 1, j − 1Pa − 2. (E1)

In other words, Eq. (29) is inverted into Eq. (E1) using full perimeter lattice
constants explained in ref. 10. Combining Eqs. (29) and (E1), contributions
from small clusters are canceled out and we obtain a simple formula,

Opi, i+xP
−

[ a= C
a − x

j=1
Opj, j+xPa − C

(a − 1) − x

j=1
Opj, j+xPa − 1. (E2)

There are formulae also for the free energy and we have used it for
calculating the specific heat of the SU(.) limit in ref. 4. The free energy
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from the interaction part for H (p)
a is fa := − b−1 ln Oexp(−bH (p)

a )P0. The
net contribution from the a-site cluster is defined as,

f −

a :=fa − C
a − 1

a1=1
(a1+1) f −

a − a1
. (E3)

The total net contribution from clusters smaller than or equal to a is
defined as

f −

[ a := C
a

l=1
f −

l. (E4)

The simplified version of these relations also exists. Equation (E3) is
rewritten as (10)

f −

a=fa − 2fa − 1+fa − 2. (E5)

Finally, Eq. (E4) is reduced to

f −

[ a=fa − fa − 1. (E6)

Here, f −

[ a is correct up to O[(bJ)2a − 1]. Note that f −

[ .=Fint/N, where
Fint := − T ln Oexp(−bH (p))P0. In fact, Eq. (E6) is reduced to f −

[ .=
dFint/dN in the a Q . limit.

APPENDIX F. AN EXAMPLE OF THE TRACE

Let us consider a five-site system. Then,

Tr(5) 1= C
n

a1=1
· · · C

n

a5=1
Oa1a2a3a4a5 | a1a2a3a4a5P=n5. (F1)

We show the calculation for P=P1, 4P3, 5P1, 2 below. Here, Pi, j exchanges
ith state and jth state.

Tr(5) P= C
n

a1=1
· · · C

n

a5=1
Oa1a2a3a4a5 | P |a1a2a3a4a5P

= C
n

a1=1
· · · C

n

a5=1
Oa1a2a3a4a5 | a4a1a5a2a3P

= C
n

a1=1
· · · C

n

a5=1
da1, a4

da2, a1
da3, a5

da4, a2
da5, a3

(F2)
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Let us consider a condition to give a nonzero contribution. Here, da1, a4

requires a1=a4, then da4, a2
requires a4=a2, then da2, a1

requires a2=a1.
These are reduced to a1=a4=a2. In fact, this procedure is equivalent to
finding a cyclic permutation 1 Q 4 Q 2 Q 1. By the same argument,
variables in another cyclic permutation 3 Q 5 Q 3 also should be equal
to each other, namely, a3=a5. Hence, there are only two independent
variables in the multiple summation above. Accordingly, we obtain

Tr (5) P=n2. (F3)

In other words, permutation (12345) Q (41523) is composed of cycles
(142) Q (421), (35) Q (53), and then, the number of independent variables
is given by the number of cycles, namely, two.

Let us operate one more exchange operator to P. When P1, 2 is
operated, both 1 and 2 belong to a cycle (142), and this operation breaks
this cycle. That is, P1, 2P has three cycles (1)(24)(35). In the case of P1, 3P,
however, 1 belongs to (142), and 3 belongs to (35), and these cycles are
united, namely, P1, 3P has only one cycle (15342).

APPENDIX G. ANOTHER DEFINITION OF QUASI-MOMENTS AND

QUASI-CUMULANTS

In fact, a quasi-moment can be defined without a prefactor in
Eqs. (53) and (54). In this case, Fig. 12(b) is equal to a quasi-moment. The
generating function for this quasi-moments is defined by a derivative as,

G̃qm :=
“

“l i, i+1

“

“l i+1, i+2
· · ·

“

“lj − 1, j

Opi, jP

[Pi, j Pi, i+1Pi+1, i+2 · · · Pj − 1, j]s
. (G1)

Consequently, the generating function for the corresponding quasi-
cumulants is written as,

G̃qc :=ln G̃qm. (G2)

However, we have to integrate the quasi-moment generating function
j − i − 1 times to come back to the correlation function. Hence, it is difficult
to calculate general dependence on j − i, and thus this definition is not
suitable for our purpose. This is the reason why we have adopted Eq. (51).

APPENDIX H. AMIDA-DIAGRAMS

First, let us think about moment amida-diagrams. In order to give
a nonzero contribution, a configuration at a nearest-neighbor pair is
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Fig. 28. A part of amida-diagrams. The pairs of two bonds can be simplified. Diagrams in
parentheses represents which site belongs to which cyclic permutation.

topologically equivalent to one of the two types shown in Fig. 28. A pair
of Px, y can be simplified by exchanging subscripts x and y of operators
between them. We can simplify left and right pairs of two bonds to give the
r.h.s. of Fig. 28. In the parentheses, we schematically represent which sites
are included in which cycle; sites belonging to a cycle are connected by a
line.

In the moment versions of amida-diagrams in Fig. 24, we simplify
bonds at every other intersite, namely, P1, 2, P3, 4,... . The simplified
diagrams are made of the pieces in Fig. 28 and special pieces for the ends as
shown in Fig. 29. When the end pieces are absent, any combination of the
pieces in Fig. 28 gives two cycles. When a is an even number, the end pieces
are simple vertical lines, and do not do anything to cycles. Hence, the
diagram has two cycles and gives n2/na. When a is an odd number, one of
the end pieces is not a simple vertical line as shown in Fig. 29(b), and it
unites two cycles into one. Therefore, the diagram has only one cycle and
gives n/na. The important point is that the amida-diagrams of odd a are
equal to those of a+1.

Then, we can prove Fig. 24 using a mathematical induction. In
Fig. 30, we explicitly calculates the lowest order. Next, let us consider the
mixed expansion in Fig. 25 for the higher orders. Suppose a is an odd
number. The first and second terms cancel out each other by the same
argument as noted in the context of Eq. (39) and Fig. 15. If Fig. 24 is true
for the lower orders, the sum of the third and fourth terms, the sum of the

Fig. 29. The simplified diagrams are made of these pieces. For a guide to an eye, the pieces
are separated by small spaces. Diagrams in parentheses represent which site belong to which
cyclic permutation.
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Fig. 30. Explicit calculation of the lowest order.

fifth and sixth terms,..., are equal to zero. As a result, only the last term
survives. Since the moment amida-diagram in it is equal to unity, we obtain
− (1 − n−2). Next, suppose a is an even number. The sum of the first and the
second terms is n2

na
(1 − 1

n2 ). The third term is − (1 − 1
n2 ) times n

na − 1 . Hence, the
first, second and third terms cancel out. Furthermore, if Fig. 24 is true for
the lower order, the sum of the fourth and fifth terms, the sum of the sixth
and seventh terms,..., are equal to zero. Namely, again, only the last term
survives. Since the moment amida-diagram in it is equal to unity, we obtain
(1 − n−2).
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